-1

  

 

 

Google Cloud Platform

 


******************

 

 

 

Google Cloud Platform

The Google Cloud Platform (GCP) is a portfolio of cloud computing services and solutions, orignally based around  the initial Google App Engine framework for hosting web applications from Google’s data centers.  (The Google App Engine  was originally launched in 2008). GCP is now widely regarded as one of the top three premier cloud computing platforms available.  However, it still  trails Amazon Web Services (AWS) and Microsoft Azure  in market share.   GCP’s pricing models are very different from  those of AWS or Azure.  

Following the introduction of Google App Engine, Google later released  a variety of complementary tools, including a data storage layer, and Google Compute Engine, which is Infrastructure as a Service (IaaS), and supports the use of virtual machines.  Once establishing itself as an  IaaS provider, Google added additional products including;

  • a load balancer,
  • DNS, monitoring tools, and
  • data analysis services

This brought GCP closer to functional parity with AWS and Azure, making them much more competitive in the cloud market.  

Even though it has drawn closer to the functionality offered by AWS, GCP is no ‘cookie-cutter’ version of AWS.   GCP apparently seeks to differentiate itself, through a hybrid cloud and multi-cloud strategy.  The critical functionality to make this happen, is based on a new service offering called ‘Anthos‘.

CONTACT US 

Google Anthos

Google Anthos Service Mesh

Google Anthos  is a collection of services and tools, which provides a consistent platform for all application deployments, both legacy in addition to cloud native.  Cloud in addition to on-premises.  Third party cloud, or existing on-premises solutions can be fully utilized, without requiring administrators and developers to learn different environments and APIs.

Anthos is built on  open source technologies like Kubernetes. This makes GCP a flexible and open cloud solution for companies with hybrid or multi-cloud ambitions.

 

Cloud Run for Anthos

Cloud Run for Anthos

Anthos “Serverless” solutions are accomplished by utilizing Cloud Run for Anthos.    Cloud Run brings the best of both serverless and containers together. It allows developers to write code in any language they choose, using any binary, without having to worry about managing the underlying infrastructure.

Anthos, along with Cloud Run for Anthos, allows the underlying infrastructure to be completely ‘abstracted’,  and not serve as a design issue, for developers and architects.  

AnthosCloud Run for Anthos, and related Kubernetes Clusters  represent a family of  tools and technologies that are critical in enabling the Google Cloud Platform to deliver on a hybrid cloud & multi-cloud strategy.   The development philosophy here is  ‘develop once, and deploy anywhere‘.

Google Cloud Compute Services

Google Cloud Compute Services consists of four components;

  • Cloud Functions 
  • App Engine
  • Kubernetes Engine 
  • Compute  Engine

Each of these abstracts a different part of the solutions architecture, as follows;

  • Cloud Functions abstracts the application layer, and provides a control surface for service invocations   
  • App Engine abstracts the infrastructure, and provides a control surface at the application layer   
  • Kubernetes Engine abstracts the Virtual Machines (VM’s), and provides a control surface for managing Kubernetes cluster and related hosted containers     
  • Compute Engine abstracts the underlying hardware and provides a control surface for infrastructure components

CONTACT US

Google Cloud Compute Services

                                                             Google Cloud

                                     Architectural Framework & Solution Scenarios

 

We will now look at possible architectural options and solution scenarios, for those deploying the Google Cloud Platform to deliver on organizational  IT functional requirements.   We will review four ‘families’ of  architectural frameworks/solution scenarios, including;

  • Infrastucture Updating   
  • Data Control     
  • Application Development   
  • Analytics Development

Options groups assigned to each of these solutions scenarios may be found next;

 

infrastructure updating 

  • Hybrid
  • Networking
  • Migrations
  • Security &  Compliance
  • Windows

            DATA                  CONTROL     

  • Databases 
  • Storage 
  • SAP
  • Energy
  • Healthcare
  • Media

APPLICATION DEVELOPMENT

  • Hybrid
  • Networking
  • Migrations
  • Security &  Compliance
  • Windows

    Analytics          development 

  • Big Data 
  • Data Warehouse 
  • AI & ML
  • Retail & eCommerce
  • Financial Services

Before we expand on each of the four families of architectural frameworks & solutions,  and the twenty one options they include, we want to provide a preview of the graphics we’ll  be using, next;

GCP Update-Infrastructure Architectural Family

 

GCP Data-Control Architectural Family
GCP Application-Development Architectural Family

 

GCP Analytics-Development Architectural Family

 

We’ll now perform a detailed review of these four Architectural Frameworks, the twenty-one options they include, and the one-hundred-fourteen specific solutions they cover, next;

GCP Update-Infrastructure Architectural ‘Family’

 

GCP Update-Infrastructure, Hybrid

For GCP,  the Hybrid  option covers the following specific solutions;

  • Hybrid with On-Premise Data and Applications   
  • Hybrid Kubernetes & on-prem svcs w/ Istio     
  • Cloud bursting   
  • Business continuity hybrid/multi-cloud     
  • Environment hybrid       
  • Edge hybrid     
  • Analytics hybrid/multi-cloud     
  • Tiered Hybrid

Of course, the GCP Hybrid  option, by definition covers solutions which link on-premises solutions with the GCP.

The table below provides a summary of the most important use case for each of these options.

Hybrid  Options

Use Case

Hybrid with On-Premise Data & Apps

Hybrid Kubernetes & on-prem svcs w/ Istio

 

Cloud bursting 

Business continuity hybrid/multi-cloud 

Environment hybrid

 

 

 

Edge hybrid

Analytics hybrid/multi-cloud 

Tiered Hybrid

*Some systems run on GCP, private link to others  at onprem datacenter

*Cloud Interconnect, onprem to GCP,

   w/ Istio open-source service mesh

*Private onprem datacenter for baseline loads, burst  to cloud for extra capacity

*GCP runs cold, warm, hot standby systems of mission-critical apps to minimize (RPO) & (RTO).

* Production workload exists at local datacenter,

  with the testing (DevOps) workload at GCP.

 

 

*Run time/business critical workloads locally, use GCP for non-critical workloads

*Use GCP for analytical workloads w/  pronounced ‘demand peaks’

*New front-end apps deployed to GCP, while backend apps stay on-prem

 

GCP Update-Infrastructure, Networking

For GCP,  the Networking  option covers the following specific solutions;

  • Floating IP addresses             
  • Using Your Own Public IP addresses   
  • High Availability NAT           
  • Latency optimized Travel Sample Architecture

 

Note:     NAT = Network Address Translation

The table below provides a summary of the most important use case for each of these options.

Networking  Options

Use Case

Floating IP addresses   

Using Your Own Public IP addresses 

 

High Availability NAT 

 

Latency optimized Travel Sample Architecture

*Floating/virtual IP addresses, used onprem, accomodate via Routes API on GCP

*Provider independent address space ,

 via  Cloud Interconnect to GCP

*Network Address Translation(NAT) delivered via GCP’s Managed Cloud NAT Service

 

*Serve users from closest region to location, via Google’s Global Cloud Load Balancing

 

 

GCP Update-Infrastructure, Migrations

For GCP,  the  ____  option covers the following specific solutions;

  • DB2 On GCP 
  • HA DB2 On GCP   
  • Postgres to GCP   
  • Oracle to Cloud Spanner 
  • DynamoDB to Cloud Spanner

 

 

The table below provides a summary of the most important use case for each of these options.

Migrations Options

Use Case

DB2 On GCP

HA DB2 On GCP

Postgres to GCP

Oracle to Cloud Spanner

DynamoDB to Spanner

*IBM‘s DB2 migrated to GCP

*IBM‘s high availability DB2  migrated to GCP

*Postgres SQL Db Master and Replica, to GCP’s Replica & Chained Replica

*Oracle db to CSV files to GCP’s Cloud Dataflow ETL & GCP’s Cloud Spanner 

*AWS  Dynamo DB migrated to GCP’s Cloud Spanner

 

 

GCP Update-Infrastructure, Security & Compliance

For GCP,  the    option covers the following specific solutions;

  • PCI 
  • Tokenizing Cardholder data for PCI   
  • Binary K8S Auth     
  • Multiple Network Interfaces

 

 

The table below provides a summary of the most important use case/deployment option for each of these options.

Security & Compliance Options

Use Case

PCI 

 

Tokenizing Cardholder data for PCI

Binary K8S Auth

Multiple Network Interfaces

*Use Google Stackdriver

for Cloud Monitoring,  to track PCI DSS acitivity

*Tokenization, substituting a benign placeholder value, for sensitive information

*Ensures only trusted container images are deployed on Google Kubernetes

*Create configurations, so an instance connects directly to several VPC networks

 

 

GCP Update-Infrastructure, Windows

For GCP,  the    option covers the following specific solutions;

  • Federate with AD    (Active Directory)
  • Federate with Azure AD

 

 

The table below provides a summary of the most important use case for each of these options.

Windows Options

Use Case

Federate with AD   (Active Directory)

 

Federate with Azure AD

Cloud Identity

*Configure Google Cloud Identity or Workspace to use  Active Directory as a third party identify provider (IdP) and authoritative source .

*Configure Google Cloud Identity or Workspace to use  Azure AD as a third party identify provider (IdP) and source for identities .

 

 

 

 

GCP Data-Control Architectural Family
GCP Data Control, Databases

For GCP,  the Databases  option covers the following specific solutions;

  • DB2 On GCP   
  • HA DB2 On GCP     
  • Postgres to GCP   
  • Oracle to Cloud Spanner   
  • Gaming Backend Database using Cloud Spanner

 

 

The table below provides a summary of the most important use case/deployment configuration for each of these options.

Database   Options

Use Case

DB2 On GCP

HA DB2 On GCP

Postgres to GCP

Oracle to Cloud Spanner

Gaming Backend Database

*IBM‘s DB2 on GCP

*IBM‘s high availability DB2  on GCP

*Postgres SQL Db Master and Replica, on GCP’s Replica & Chained Replica

*Oracle db via CSV files to GCP’s Cloud Dataflow ETL & GCP’s Cloud Spanner 

*Use Google Cloud Spanner for match history, Cloud Bigtable to log events

 

 

GCP Data-Control, Storage

Cloud Storage

For GCP,  the Storage  option covers the following specific solutions;

  • DR Cold standby server   
  • DR Warm static site   
  • DR with Application Replication (production on-prem)   
  • Hosting Avere vFXT filer on GCP   
  • Hot HA across GCP and onprem
  • DR – Cold from On-Premises to GCP with App

Note;    RPO = Recovery Point Object

              RTO  =  Recover Time Objective

              DR = Disaster Recovery

              HA = High Availability

The table below provides a summary of the most important use case for each of these options.

Storage    Options

Use Case

DR Cold standby server

 

DR Warm static site 

DR w/App Replication (prod on-prem)   

 

Hosting Avere vFXT (AvF) filer on GCP

   

DR-Hot HA across GCP and onprem        

 

DR – Cold from On-Premises to GCP with App

*Cold failover. Use GCE PD Snapshots  to meet RPO.  Replacement activates in   different zone.    Persistent disk (PD) from most recent snapshot

*Failover via configuring DNS to point to static GCP site.

*Full HA solution not required. Db replicated from on-premises to GCP.

  App constructed from snapshots.   Db replica resized to process prod workload

*AvF is filer & read thru cache.  Single storage pool for all cloud instances.

  Failover by configuring DNS to point to static GC site.

*Run HA across production & GCP environs concurrently.  Weighted A records &     health checks to support traffic splitting & failover.  Db  replicated.

 *Cold failover. Db snapshots in GC.  Deployment via GCP.   Restore most recent       bu snapshot from GC.  Test & reconfigure DNS to GCP app.

 

 

GCP Data-Control, SAP

For GCP,  the  SAP  option covers the following specific solutions;

  •  SAP Hybris on GKE 
  •  SAP S/4  HANA
  •  SAP S/4 Distributed   
  •  HA SAP HANA   
  •  SAP HANA Dynamic Tiering   
  •  SAP Business One     
  •  SAP Netweaver 3 Tier

 

 

The table below provides a summary of the most important use case for each of these options.

SAP  Options

Use Case / Deployment Configuration

SAP Hybris on GKE

SAP S/4  HANA

SAP S/4 Distributed

HA SAP HANA

SAP HANA Dynamic Tiering

SAP Business One

SAP Netweaver 3 Tier

 

SAP Business Suite

*eCommerce,  CRM,  customer experience software

*Intelligent ERP, cloud & onprem

*Every instance can run on a separate host

*High availability

*Db used for managing less frequently accessed warm data

*ERP design for small & medium sized enterprises

*Supports advanced business application programming(ABAP).  

  Supports platform independent coding

*Bundled business apps, processes, collaboration, industry specific functionality

 

 

GCP Data-Control, Energy

For GCP,  the    option covers the following specific solutions;

  • Oil and Gas     

 

 

The table below provides a summary of the most important use case and/or deployment configurations for each of these options.

Energy  Options

Use Case / Deployment Configuration

 

 

GCP Data-Control, Healthcare

For GCP,  the  Healthcare  option covers the following specific solutions;

  • Genomics, Secondary Analysis     
  • Patient Monitoring     
  • Variant Analysis     
  • Healthcare API Analytics   
  • Healthcare API ML   
  • Radiological Image Extraction         
  • ML on EHR via Healthcare API 

 

ML = Machine Learning

The table below provides a summary of the most important use case and/or deployment configuration for each of these options

Healthcare  Options

Use Case /  Deployment Configuration

Genomics, Secondary Analysis

 

Patient Monitoring

 

Variant Analysis

 

Healthcare API Analytics

 

Healthcare API ML

Radiological Image Extraction

ML on EHR via Healthcare API

*Sequencers data to Ingest Server;  metadata to Cloud SQL, raw data to GCS

 Sequence to BAM files.  Accessed via Jupyter notebooks,  BigQuery analysis

*Patient data via mobile device to Cloud Pub/Sub, to BigTable.  

  Adv analytics on stored data via Prediction API or Tensor Flow.  Notifications.

*Genomics API using Big Data, to FASTQ or BAM.  Private or shared datasets.

  Batch analysis using Cloud Dataflow, interactive via Big Query & DataLab

*Cloud Healthcare API,  Pub/Sub, Storage, to Cloud Dataflow , Dataproc to

  BigQuery to Cloud DataLab

*Machine Learning, to Cloud Pub/Sub, to ML models, to Enterprise Viewer

*DICOM API, to Imaging Analytics, to BigQuery, Cloud ML, Dataproc, DataLab

*Machine learning and analytics using Cloud Healthcare API on GCP

 

 

GCP Data-Control, Media

For GCP,  the  Media  option covers the following specific solutions;

  • Transcoding   
  • Live Streaming   
  • Rendering     
  • Hybrid Rendering 
  • Virtual Studio 

 

 

The table below provides a summary of the most important use case for each of these options.

Media  Options

Use Case /  Deployment Configuration

Transcoding

 

 

Live Streaming

 

 

Rendering

Hybrid Rendering

 

Virtual Studio

*Opensource OpenCue tool to manage encoding.  Uses ffmpeg opensource tool   to encode video.  Output optimized for OTT, streaming, Android & iOS, set top   boxes, social media platforms.  Supports different bandwidth – LTE, 4G, Wifi.

*Wowza Streaming Engine, or Nginx RTP on GCE.  Front streaming server with

a Content Delivery Network  (CDN). 

Generate playback formats HLS, HDS, Smooth Streaming, MPEG-DASH.  

 

*CGE VM’s w/ NFS cloud file system

*Common VFX Rendering pipeline.   Cloud Directory Sync to manage users/perms

*Shared POSIX files system via Cloud Filestore.  Uses OpenCue, and opensource render mgmt system .   Rendor workers as VM’s on managed instance group.   Connection Broker provides 2FAOAuth authentication.  

 

 

GCP Application-Development Architectural Family

 

GCP Application-Development, AppDev

For GCP,  the  AppDev  option covers the following specific solutions;

  • Microservices with GKE   
  • Microservices with App Engine   
  • Serverless Web Scraping with Cloud Functions   
  • REST and gRPC APIs with Cloud Endpoints   
  • Mobile Site Hosting   
  • Firebase and Google App Engine

 

 

The table below provides a summary of the most important use case for each of these options.

AppDev   Options

Use Case / Deployment Configuration

*Containerized microservices. Auto-scaling, auto-upgrade, auto-repair,   via  Google SRE’s

*App Engine Standard(PaaS). Python, Java, Go, NodeJS,  PHP runtimes

 

*Event-driven web scraping w/ Cloud Functions, Firestore & Scheduler.  Built-in support for Headless Chrome, providing sophisticated UI testing & web scraping.

*Use gRPC API for more efficient internal communication.

*Firebase for mobile or web.    Firebase linked to App Engine as a  backend app.   Firebase linked to Compute Engine as a backend app.

 

 

*Firebase syncs across  iOS, Android, Web.   Processes data via App Engine.

DevOps

 

GCP Application-Development, DevOps

For GCP,  the    option covers the following specific solutions;

  • Jenkins on k8s     
  • Continuous Delivery with Spinnaker   
  • Scale Testing with Kubernetes and Locust   
  • UI Testing with Kubernetes and Selenium

 

 

The table below provides a summary of the most important use case/deployment configuration for each of these options.

DevOps  Options

Use Case  /  Deployment Configuration

 

Jenkins on k8s 

 

Continuous Delivery with Spinnaker

 

Scale Testing w/Kubernetes & Locust

 

UI Testing w/ Kubernetes & Selenium

 

 

*Jenkins Namespace, Container Registry,  Google Load Balancer

 

*Opensource continuous delivery platform Spinnaker w/ Cloud Build.  

 

*Locust is opensource tool to quickly scaling up/down load tests of web frontend as REST APIs

 

*Selenium Hub allows coordination many browsers to perform the test suite for a web based product

 

 

GCP Application-Development, Serverless

For GCP,  the    option covers the following specific solutions;

  • Event Driven     
  • Mobile Site Hosting   
  • Platform Services on App Engine         
  • Firebase and Google App Engine   
  • Serverless Web Scraping with Cloud Functions

 

 

The table below provides a summary of the most important use case/deployment configuration for each of these options.

Serverless   Options

Use Case  /  Deployment Configuration

*Event Source, to Cloud Pub/Sub,

to Archiver Cloud Functions,

to Cloud Storage  Data Archive

 

*Firebase for mobile or web.    Firebase linked to App Engine as a  backend app.   Firebase linked to

Compute Engine as a backend app.                                           (See AppDev above)  

 

*Gaming on GCP, via RESTful HTTP endpoints. 

Cloud Datastore:Memcache   front end,

provides NoSQL db.  GKE:Agones:OpenMatch  to autoscale server resources.

 

 

*Firebase syncs across  iOS, Android, Web.   Processes data via App Engine.

 

(See  AppDev above) 

*Serverless, scalable, event-driven web scraping w/ Cloud Functions, FirestoreScheduler

 

 

 

 

 

GCP Application-Development, Internet of Things

For GCP,  the    option covers the following specific solutions;

  • Cloud  IoT Remote Monitoring   
  • Cloud  IoT MQTT Bridge   
  • Smart Home Devices     
  • Cloud to Edge ML

 

 

The table below provides a summary of the most important use     case/deployment configuration for each of these options.

Cloud IoT  Core  Options

Use Case  /  Deployment Configuration

IoT Remote Monitoring

IoT MQTT Bridge

 

Smart Home Devices

 

 

Cloud to Edge ML

 

 

*Cloud IoT Core to connect  IoT devices via MQTT or HTTP bridge to GCP.

*Devices of any size may connect thru secured, bidirectional MQTT bridge.

 

*Smart Home actions controls IoT devices thru Google Assistant.  MQTT or HTTP bridge(s) connect  IoT devices to GCP using per-device public/private key auth.

 

*Cloud IoT Edge  extends GCP data processing and machine  learning to gateways, cameras, and other connected devices.  

 

 

 

 

 

GCP Analytics-Development Architectural Family

 

GCP Analytics, Big Data

For GCP,  the  Big Data  option covers the following specific solutions;

  • Data Warehouse Modernization     
  • Log Processing   
  • Time-series Analysis 
  • Data Lake     
  • Real-Time Inventory

 

 

The table below provides a summary of the most important use  case/deployment configuration  for each of these options.

Big Data   Options

Use Case  /  Deployment Configuration

Data Warehouse Modernization

 

Log Processing

Time-series Analysis

 

Data Lake

 

Real-Time Inventory

 

 

GCP Analytics, Data Warehouse

For GCP,  the Data Warehouse  option covers the following specific solutions;

  • Data Lake   
  • Shopping Cart Analysis   
  • DMP

 

 

The table below provides a summary of the most important use case/deployment configuration  for each of these options.

Data Warehouse  Options

Use Case  /  Deployment Configuration

Data Lake

Shopping Cart Analysis

DMP

*Cloud Storage

*Analyze customer behavior(heuristics) via Cloud Dataproc, Dataflow , detail analtyics via BigQuery

*Data Management Platform

 

 

GCP Analytics, AI&ML

For GCP,  the AI & ML  option covers the following specific solutions;

  • Recommendation Engines   
  • Chatbot with Dialogflow 
  • TensorFlow on GPU 
  • Low Latency ML Serving 
  • Feature Embeddings   
  • Semantic Similarity

 

 

The table below provides a summary of the most important use    case/deployment configuration  for each of these options.

AI  &  ML   Options

Use Case  /  Deployment Configuration

 

Recommendation Engines 

 

 

Chatbot with Dialogflow

 

 

TensorFlow on GPU

 

Low Latency ML Serving

 

Feature Embeddings

 

Semantic Similarity

 

*GCP Prediction API to train regression /classification models & generate realtime predictions..OR   Spark MLlib  sourced  custom machine learning algorithms, deployed to Cloud Dataproc

 

*Dialogflow is an end-to-end, create-once, and deploy-anywhere development suite for creating     conversational interfaces for websites/mobile apps/messaging platforms, & IoT devices

 

*TensorFlow training application on  Graphics Processing Units (GPU) to accelerate training process for deep learning models.

 

*Speeds  availability of Machine Learning output

 

*An embedding is a translation of a high-dimensional vector into a low-dimensional space

 

*Explore similar articles via embeddings comparable to SQL queries.

 

 

GCP Analytics, Retail & eCommerce

For GCP,  the  Retail & eCommerce  option covers the following specific solutions;

  • Fraud Detection   
  • Real-Time Inventory   
  • Beacons and Targeted Marketing 
  • Shopping Cart Analysis     
  • Recommendation Engines 
  • PCI

 

 

The table below provides a summary of the most important use    case/deployment configuration  for each of these options.

Retail & eCommerce   Options

Use Case  /  Deployment Configuration

Fraud Detection

 

 

 

Real-Time Inventory

 

 

 

Beacons and Targeted Marketing

 

 

 

 

Shopping Cart Analysis

 

 

 

 

Recommendation Engines

 

 

 

 

 

PCI

 

 

*GCP Prediction API to train regression /classification models & generate realtime predictions..OR   Spark MLlib  sourced  custom machine learning algorithms, deployed to

 Cloud Dataproc

 

*Back Office Biz Apps to App Engine &

Cloud SQL via

Cloud Pub/Sub

 

*Beacon is a proximity notification.  Uses  Dataflow,

Pub/Sub &

Cloud BigTable

 

 

*Analyze customer behavior(heuristics) via Cloud Dataproc,

Dataflow,

detail analtyics via BigQuery

 

 

*GCP Prediction API to train regression /classification models & generate realtime predictions..

OR   Spark MLlib  sourced  custom machine learning algorithms, deployed to

Cloud Dataproc

 

 

 

Cloud Monitoring

w/ StackDriver,

Big Query &

Cloud Logging.

 PCI = Payment Card Industry

 

 

GCP Analytics, Financial Services

For GCP,  the Financial Services  option covers the following specific solutions;

  • Monte Carlo Simulations   
  • Time Series Analysis     
  • Fraud Detection                
  • Modernized Risk Analytics       

 

 

The table below provides a summary of the most important use    case/deployment configuration  for each of these options.

Financial Services Options

Use Case  /  Deployment Configuration

Monte Carlo Simulations

 

 

Time Series Analysis

 

 

Fraud Detection

 

 

 

Modernized Risk Analytics

*Dataproc  &

Apache Spark  provide infrastructure, capacity to run Monte Carlo simulations written in Java, Python, or Scala.

 

*BigQuery &

DataLab

 

*GCP Prediction API to train regression /classification models & generate realtime predictions..OR   Spark MLlib  sourced  custom machine learning algorithms, deployed to Cloud Dataproc

 

*GKE &

Apache Beam (Dataflow)

 

 

 

 

 

For a continued review of the Google Cloud Platform, relating to Tools & Apps, go here:   

   Google Cloud-2 

 

 

 

We WILL deliver the solution that you  need !

As a first step, we will be delighted to answer any and all of your questions !

   Contact Us Today !

Contact-Us